引言 Introduction
一、制度創(chuàng)新:全鏈條治理的三維突破 I.Institutional Innovation: A Three-Dimensional Breakthrough in Full-Chain Governance 《辦法》通過構(gòu)建“權(quán)責(zé)閉環(huán)-技術(shù)規(guī)范-執(zhí)行機(jī)制”三位一體的治理框架,系統(tǒng)性破解生成式AI帶來的內(nèi)容溯源與責(zé)任認(rèn)定難題。該制度創(chuàng)新體現(xiàn)為三大核心設(shè)計:將全鏈條參與主體納入精細(xì)化管理、建立多模態(tài)適配的技術(shù)標(biāo)準(zhǔn)體系和引入動態(tài)分級的監(jiān)管策略,既確保技術(shù)中立性與商業(yè)可行性平衡,又通過區(qū)塊鏈存證與智能評估實現(xiàn)法律追責(zé)穿透力,這也是我國AI治理從原則性規(guī)范向操作性規(guī)則的實質(zhì)性跨越。 1. 責(zé)任主體精細(xì)切割 首次將服務(wù)提供者、傳播平臺、用戶三方納入全鏈條責(zé)任體系。服務(wù)提供者需在生成環(huán)節(jié)嵌入顯式標(biāo)識(如文本“AI”角標(biāo)高度≥5%、音頻摩斯碼節(jié)奏標(biāo)識),并在元數(shù)據(jù)中寫入服務(wù)商編碼等隱式標(biāo)識;傳播平臺需核驗元數(shù)據(jù)并添加風(fēng)險提示標(biāo)簽(如“AI生成”“可能為生成”),突破傳統(tǒng)避風(fēng)港原則;用戶發(fā)布內(nèi)容需主動聲明并禁止惡意刪除標(biāo)識,形成從生成到傳播的閉環(huán)管理。例如,短視頻平臺需開發(fā)元數(shù)據(jù)核驗系統(tǒng),自動識別未合規(guī)內(nèi)容并觸發(fā)風(fēng)險提示,用戶若違規(guī)將面臨賬號封禁或法律責(zé)任。 2. 技術(shù)標(biāo)準(zhǔn)場景適配 針對文本、音頻、視頻等不同模態(tài)制定差異化規(guī)則。文本需任選在首尾等位置添加“AI”“生成/合成”文字或角標(biāo);音頻起始位置插入摩斯碼節(jié)奏標(biāo)識(“短長 短短”節(jié)奏);視頻內(nèi)容顯式標(biāo)識的文字高度不應(yīng)低于畫面最短邊長度的5%。,在視頻正常播放速度下,視頻內(nèi)容顯式標(biāo)識持續(xù)時間不應(yīng)少于2s等。隱式標(biāo)識通過在文件數(shù)據(jù)中嵌入企業(yè)專屬編號和唯一識別碼(如SHA-256算法生成),即使圖片經(jīng)過50%以上的壓縮處理,這些隱藏標(biāo)記仍能保留,確保內(nèi)容來源可追溯,為法律取證提供技術(shù)支撐。 3. 梯度合規(guī)與動態(tài)監(jiān)管 《辦法》創(chuàng)新采用“分階段合規(guī)+智能評估”的雙軌執(zhí)行機(jī)制,兼顧監(jiān)管剛性與行業(yè)適應(yīng)性。制度設(shè)置過渡期,允許中小企業(yè)分階段落實技術(shù)標(biāo)準(zhǔn)——初創(chuàng)企業(yè)初期僅需完成基礎(chǔ)標(biāo)識要求(如文本末尾添加“AI”標(biāo)識),逐步向元數(shù)據(jù)管理等高級要求過渡;而大型平臺需在過渡期內(nèi)完成全技術(shù)參數(shù)改造(如視頻動態(tài)水印、音頻摩斯碼標(biāo)識等),確保技術(shù)合規(guī)性。同時構(gòu)建動態(tài)評估系統(tǒng),通過機(jī)器學(xué)習(xí)算法實時監(jiān)測標(biāo)識質(zhì)量與內(nèi)容風(fēng)險,對未達(dá)標(biāo)內(nèi)容自動觸發(fā)平臺二次核驗,高風(fēng)險內(nèi)容則由區(qū)塊鏈存證系統(tǒng)快速溯源。司法實踐中,已有案例通過隱式標(biāo)識中的服務(wù)商編碼同步追責(zé)生成工具開發(fā)商與傳播平臺,突破傳統(tǒng)“技術(shù)中立”抗辯邏輯,強(qiáng)化責(zé)任穿透力。這一機(jī)制既降低中小企業(yè)的合規(guī)成本,又通過智能監(jiān)管提升治理效率,形成技術(shù)標(biāo)準(zhǔn)與法律追責(zé)的閉環(huán)。 The “Measures” establish an integrated governance framework comprising “responsibility loop closure, technical standards, and enforcement mechanisms”, systematically solving challenges related to content traceability and accountability in generative AI. This institutional innovation introduces three core designs: 1. Refined classification of responsible entities, ensuring comprehensive management of all stakeholders. 2. A multi-modal adaptive technical standards system, tailored for various AI-generated content formats. 3. A dynamic, tiered regulatory strategy, balancing technological neutrality with commercial feasibility while leveraging blockchain evidence storage and intelligent assessments for legal accountability. This represents a significant leap from principle-based regulation to operational rules in China’s AI governance. 1. Refined Allocation of Responsibility For the first time, service providers, dissemination platforms, and users are all included in a full-chain responsibility system. Service providers must embed explicit labels (e.g., "AI" corner text with a height ≥5%, or Morse code rhythm identifiers for audio content) and write service provider codes and other implicit labels in metadata. Dissemination platforms are required to verify metadata and add risk warning labels (e.g., "AI-generated" or "Possibly AI-generated"), breaking with the traditional "safe harbor" principle. Users must proactively declare AI-generated content and are prohibited from maliciously removing labels, forming a closed-loop management system from generation to dissemination. For example, short video platforms must develop metadata verification systems to automatically identify non-compliant content and trigger risk warnings, with violators facing account suspension or legal liabilities. 2. Technical Standard Adaptation Across Modalities Differentiated rules have been developed for text, audio, and video modalities. Text content must include "AI" or "Generated/Synthetic" labels at the beginning or end. Audio must insert Morse code rhythm markers (e.g., "short-long-short-short") at the start. Video content requires explicit labels with a text height no less than 5% of the shortest side of the frame and a duration of at least 2 seconds at normal playback speed. Implicit labels, such as enterprise-specific codes and unique identifiers generated using algorithms like SHA-256, are embedded in file data to ensure traceability even after 50% compression, providing technical support for legal evidence collection. 3. Hierarchical Compliance and Dynamic Regulation The "Measures" adopt an innovative "phased compliance + intelligent assessment" dual-track enforcement mechanism, balancing regulatory rigidity and industry adaptability. A transition period allows small and medium-sized enterprises (SMEs) to phase in technical standards—initially meeting basic labeling requirements (e.g., the addition of "AI" labels at the end of text)—before gradually advancing to higher requirements such as metadata management. Larger platforms must complete full technical parameter upgrades (e.g., dynamic video watermarks and Morse code markers for audio) within the transition period to ensure compliance. A dynamic evaluation system, powered by machine learning algorithms, monitors labeling quality and content risks in real time. Non-compliant content triggers secondary verification by the platform, while high-risk content is rapidly traced using blockchain. Judicial practices have already leveraged implicit labels to hold both generative tool developers and dissemination platforms accountable, breaking traditional "technological neutrality" defense arguments and enhancing accountability. This mechanism reduces compliance costs for SMEs, improves governance efficiency through intelligent regulation, and creates a closed-loop system of technical standards and legal accountability.
二、國際比較:中國方案的差異化競爭力 II. International Comparison: The Competitive Edge of China’s Approach 當(dāng)前國際上AI生成內(nèi)容治理呈現(xiàn)三大差異化路徑:歐盟以風(fēng)險預(yù)防為核心構(gòu)建統(tǒng)一立法框架,美國依托市場驅(qū)動形成分散化監(jiān)管體系,中國通過行政主導(dǎo)實現(xiàn)全鏈條動態(tài)治理。三者在治理理念、法律框架、技術(shù)標(biāo)準(zhǔn)等維度存在顯著差異,既反映文化差異,也映射出對技術(shù)創(chuàng)新與公共安全的不同平衡邏輯。本表基于2024-2025年最新政策動態(tài)與司法實踐,系統(tǒng)對比中歐美治理方案的共性與特性。 由以上對比可以看出,歐盟以風(fēng)險預(yù)防為核心,通過《人工智能法案》構(gòu)建統(tǒng)一風(fēng)險分級框架,嚴(yán)控高風(fēng)險場景(如生物識別),但其高合規(guī)成本與技術(shù)迭代滯后可能抑制創(chuàng)新;美國依托市場驅(qū)動原則,以聯(lián)邦行政令和稅收激勵推動行業(yè)自律與技術(shù)開放,但松散的責(zé)任機(jī)制導(dǎo)致溯源盲區(qū),且州立法分散削弱執(zhí)行力;中國通過縱向分領(lǐng)域立法建立全鏈條連帶責(zé)任,以雙軌標(biāo)識和區(qū)塊鏈溯源強(qiáng)化安全可控,但技術(shù)標(biāo)準(zhǔn)國際兼容性仍需提升。三者治理路徑根植于歷史傳統(tǒng)——?dú)W盟重法律本位,美國堅持產(chǎn)業(yè)優(yōu)先,中國強(qiáng)調(diào)行政主導(dǎo)。AI生成內(nèi)容治理未來將要面對的挑戰(zhàn)或許在于平衡全球共識與技術(shù)割裂,以應(yīng)對地域博弈帶來的標(biāo)準(zhǔn)競爭與算力壁壘。 Currently, the governance of AI-generated content globally follows three differentiated pathways: the EU emphasizes preventive risk management through a unified legislative framework, the US relies on market-driven and decentralized regulatory systems, and China implements full-chain dynamic governance through administrative leadership. These approaches differ significantly in governance philosophy, legal frameworks, and technical standards, reflecting both cultural differences and distinct balances between technological innovation and public safety. Below is a comparison of the latest policies and judicial practices from 2024-2025: From this comparison, the EU prioritizes risk prevention through the AI Act, imposing strict controls on high-risk scenarios (e.g., biometric identification). However, its high compliance costs and slow technical iterations may stifle innovation. The US relies on market-driven principles, using federal executive orders and tax incentives to promote industry self-regulation and technological openness, but its loose accountability structure creates traceability blind spots, and fragmented state laws weaken enforcement. China, by establishing vertical, sector-specific legislation and full-chain joint responsibility, emphasizes safety and control through dual-track markers and blockchain traceability, though international compatibility of technical standards remains an area for improvement. These governance paths reflect historical traditions: the EU's law-centric approach, the US's industry-first principle, and China's administrative leadership. The future challenge for AI-generated content governance lies in balancing global consensus with technological fragmentation to address standard competition and computational power barriers arising from regional conflicts.


三、企業(yè)合規(guī)實施:全周期風(fēng)險管理路徑 III. Corporate Compliance Strategy: A Full-Cycle Risk Management Approach 結(jié)合當(dāng)前監(jiān)管政策與市場環(huán)境,為應(yīng)對企業(yè)全周期運(yùn)營中的多元風(fēng)險挑戰(zhàn),建議企業(yè)多維度構(gòu)建系統(tǒng)性風(fēng)險防控體系。企業(yè)全周期風(fēng)險管理需以數(shù)據(jù)治理、算法合規(guī)與動態(tài)監(jiān)控為核心,構(gòu)建覆蓋事前預(yù)防、事中控制、事后追溯的閉環(huán)體系。通過數(shù)據(jù)全生命周期可追溯性設(shè)計(如生物信息加密存儲、區(qū)塊鏈存證)夯實合規(guī)基礎(chǔ),依托算法透明化及責(zé)任界定機(jī)制防范法律風(fēng)險,并借助實時風(fēng)險監(jiān)測與分級響應(yīng)體系實現(xiàn)動態(tài)管控。以下為具體實施路徑: 1. 數(shù)據(jù)治理夯實合規(guī)基礎(chǔ)規(guī)避源頭風(fēng)險 在數(shù)據(jù)驅(qū)動的業(yè)務(wù)環(huán)境下,企業(yè)應(yīng)建立全面的數(shù)據(jù)合規(guī)管理體系,確保數(shù)據(jù)的合法收集、存儲和使用,以降低法律風(fēng)險并符合監(jiān)管要求。首先,企業(yè)應(yīng)優(yōu)先建立私有化數(shù)據(jù)資源池,并在數(shù)據(jù)處理過程中采取合理的合規(guī)措施。例如,訓(xùn)練數(shù)據(jù)應(yīng)經(jīng)過分階段脫敏處理,特別是涉及生物信息的數(shù)據(jù),可采用加密存儲技術(shù),減少敏感數(shù)據(jù)泄露風(fēng)險。同時,可借助區(qū)塊鏈技術(shù)進(jìn)行數(shù)據(jù)存證,確保數(shù)據(jù)來源可追溯,滿足合規(guī)要求。其次,在涉及個人信息的數(shù)據(jù)處理中,企業(yè)需嚴(yán)格遵守《個人信息保護(hù)法》等法律法規(guī)。例如,在AI客服系統(tǒng)中,企業(yè)應(yīng)通過聲紋剝離和語義模糊化雙重處理,降低身份識別風(fēng)險,確保不會過度收集或濫用用戶個人信息。此外,企業(yè)應(yīng)定期審查數(shù)據(jù)收集與使用流程,確保符合法律法規(guī)要求,并防范“數(shù)據(jù)投毒”、隱私泄露等潛在合規(guī)風(fēng)險。同時,企業(yè)應(yīng)建立數(shù)據(jù)合規(guī)審查和應(yīng)急響應(yīng)機(jī)制,在發(fā)生數(shù)據(jù)安全事件時,能夠迅速采取措施降低法律風(fēng)險。例如,可制定數(shù)據(jù)訪問權(quán)限管理制度,定期對數(shù)據(jù)處理流程進(jìn)行審計,并在發(fā)現(xiàn)數(shù)據(jù)違規(guī)使用時,及時采取補(bǔ)救措施,確保企業(yè)的數(shù)據(jù)治理體系符合監(jiān)管要求。 2. 算法合規(guī)與法律責(zé)任防范監(jiān)管風(fēng)險 在人工智能應(yīng)用中,算法的決策透明性和責(zé)任界定是企業(yè)合規(guī)管理的關(guān)鍵。企業(yè)在使用AI系統(tǒng)時,應(yīng)確保算法符合現(xiàn)行法律法規(guī),并采取有效措施防范法律風(fēng)險。首先,在合同和用戶協(xié)議中明確算法使用范圍及責(zé)任劃分。例如,在智能法律咨詢、自動化合同審核等場景下,企業(yè)可在免責(zé)聲明中說明AI的輔助性質(zhì),避免因算法誤判導(dǎo)致的法律責(zé)任糾紛。其次,企業(yè)應(yīng)建立內(nèi)部合規(guī)審查機(jī)制,定期評估AI模型的合規(guī)性。例如,涉及消費(fèi)者權(quán)益保護(hù)的算法,應(yīng)符合《消費(fèi)者權(quán)益保護(hù)法》和《電子商務(wù)法》的要求,確保算法不會引發(fā)價格歧視、數(shù)據(jù)濫用等問題。此外,AI系統(tǒng)的決策邏輯應(yīng)具備可解釋性,確保相關(guān)方在出現(xiàn)爭議時能夠追溯算法決策過程。企業(yè)可通過提供決策記錄或設(shè)置人工復(fù)核機(jī)制,提高合規(guī)透明度。例如,在智能合同審核系統(tǒng)中,應(yīng)提供關(guān)鍵條款的風(fēng)險提示,并允許用戶進(jìn)行人工確認(rèn),以減少合規(guī)風(fēng)險。最后,企業(yè)應(yīng)關(guān)注行業(yè)監(jiān)管趨勢,及時調(diào)整AI合規(guī)策略。針對高風(fēng)險領(lǐng)域(如金融、醫(yī)療、法律),企業(yè)可與專業(yè)律師團(tuán)隊合作,制定針對性合規(guī)方案,確保算法應(yīng)用符合行業(yè)監(jiān)管要求,降低法律風(fēng)險。 3. 動態(tài)監(jiān)控與應(yīng)急響應(yīng)構(gòu)建閉環(huán)管理體系 企業(yè)應(yīng)建立完善的合規(guī)監(jiān)測體系,確保AI系統(tǒng)在數(shù)據(jù)安全、內(nèi)容生成和算法公平性方面符合法律法規(guī)要求。建議搭建合規(guī)指數(shù)儀表盤,實時追蹤數(shù)據(jù)泄露風(fēng)險、算法偏差等關(guān)鍵合規(guī)指標(biāo),并設(shè)立分級響應(yīng)機(jī)制,以便及時應(yīng)對潛在法律風(fēng)險。具體而言,對于低風(fēng)險事件(如標(biāo)注缺失),企業(yè)可采取自動補(bǔ)標(biāo)等技術(shù)手段進(jìn)行修正;對于中風(fēng)險事件(如版權(quán)爭議),建議在48小時內(nèi)完成合規(guī)評估,并根據(jù)情況采取下架、修改或補(bǔ)充授權(quán)等措施;對于高風(fēng)險事件(如深度偽造或違法內(nèi)容生成),企業(yè)應(yīng)立即暫停相關(guān)功能,并同步向監(jiān)管部門報告,以降低法律責(zé)任。參考電商行業(yè)的實踐,企業(yè)在AI系統(tǒng)的輸入端可部署指令過濾機(jī)制,攔截涉及違法或不正當(dāng)競爭的指令(如“生成虛假促銷話術(shù)”);在輸出端,可對生成內(nèi)容進(jìn)行合規(guī)審查,自動標(biāo)注風(fēng)險標(biāo)簽,并利用區(qū)塊鏈技術(shù)存證,確保內(nèi)容可追溯,以備后續(xù)法律合規(guī)審查。此外,企業(yè)應(yīng)持續(xù)關(guān)注最新法律法規(guī)動態(tài),確保內(nèi)部合規(guī)政策與監(jiān)管要求同步更新。同時,建議定期開展合規(guī)自查,并與法律顧問合作,優(yōu)化AI合規(guī)管理體系,以有效降低法律合規(guī)風(fēng)險。 To address the diverse risk challenges in enterprises’ full-cycle operations under the current regulatory policies and market environment, it is recommended that enterprises construct a systematic risk prevention and control framework from multiple dimensions.Full-cycle risk management should focus on data governance, algorithm compliance, and dynamic monitoring, forming a closed-loop system covering pre-event prevention, mid-event control, and post-event traceability. 1. Data Governance: Laying a Compliance Foundation to Avoid Source Risks In a data-driven business environment, enterprises should establish comprehensive data compliance management systems to ensure lawful data collection, storage, and usage, thereby reducing legal risks and meeting regulatory requirements. Data Pooling and Protection: Enterprises should prioritize creating private data resource pools and adopt phased de-identification for sensitive data, particularly biological information, using encryption technologies to minimize data leakage risks. Blockchain technology can be leveraged for data evidence preservation, ensuring data traceability and compliance. Personal Data Processing: Strict adherence to laws such as the Personal Information Protection Law is essential. For instance, in AI customer service systems, enterprises can mitigate identity recognition risks by employing dual-layer protections such as voiceprint stripping and semantic obfuscation, avoiding excessive collection or misuse of personal data. Review and Response Mechanisms: Enterprises should regularly audit data collection and usage processes to ensure compliance, and establish emergency response mechanisms to promptly address data security incidents. For example, implementing data access control policies and conducting routine audits can mitigate risks of "data poisoning" or privacy breaches. 2. Algorithm Compliance and Legal Risk Mitigation Algorithm transparency and accountability are central to compliance management in AI applications. Contractual Clarity: Clearly define algorithm usage scope and responsibilities in contracts and user agreements. For example, in legal AI applications like smart contract reviews, disclaimers can state the AI's auxiliary nature to avoid liability disputes arising from algorithmic errors. Internal Audits: Regularly evaluate algorithm compliance, particularly in consumer rights-related applications, to ensure alignment with laws such as the Consumer Protection Law and E-Commerce Law, thus preventing issues like price discrimination or data misuse. Explainability: Ensure that AI systems' decision-making processes are explainable. For instance, smart contract review systems should provide clear risk alerts for key clauses and allow for manual review to enhance compliance transparency. Regulatory Trends: Monitor regulatory trends in high-risk areas (e.g., finance, healthcare, legal) and collaborate with legal experts to develop targeted compliance strategies. 3. Dynamic Monitoring and Emergency Response: Building a Closed-Loop Management System Enterprises should establish comprehensive compliance monitoring systems to ensure AI systems meet legal and regulatory requirements in areas like data security, content generation, and algorithmic fairness. Real-Time Monitoring: Implement compliance dashboards to track key risks such as data breaches or algorithmic bias. For low-risk events (e.g., missing labels), automated correction technologies can be used. For medium-risk events (e.g., copyright disputes), compliance evaluations should be conducted within 48 hours, with appropriate measures such as takedowns or licensing adjustments. For high-risk events (e.g., deepfakes or illegal content), immediate suspension of related functions and reporting to regulators are necessary. Filtering Mechanisms: Deploy input filters to block illegal or unethical prompts, and conduct compliance reviews on output content, using blockchain for traceability to support legal audits. Regulatory Updates: Stay informed about legal and regulatory changes to ensure internal compliance policies remain up-to-date. Conduct regular self-assessments and collaborate with legal advisors to optimize AI compliance strategies.
結(jié) 語 Conclusion 在生成式人工智能技術(shù)快速發(fā)展的背景下,全球范圍內(nèi)的監(jiān)管體系正在加速演進(jìn),以應(yīng)對AI內(nèi)容生成帶來的法律與合規(guī)挑戰(zhàn)。中國的《人工智能生成合成內(nèi)容標(biāo)識辦法》及配套標(biāo)準(zhǔn),憑借全鏈條治理、顯隱雙軌標(biāo)識和動態(tài)監(jiān)管機(jī)制,在國際競爭格局中形成了獨(dú)特的合規(guī)模式。對于企業(yè)而言,建立完善的數(shù)據(jù)治理體系、明確算法合規(guī)責(zé)任、構(gòu)建實時監(jiān)測與應(yīng)急響應(yīng)機(jī)制,是降低法律風(fēng)險、確保技術(shù)可持續(xù)發(fā)展的關(guān)鍵路徑。未來,隨著國際標(biāo)準(zhǔn)的趨同與技術(shù)監(jiān)管的深化,企業(yè)需持續(xù)關(guān)注法律動態(tài),優(yōu)化自身合規(guī)體系,在確保創(chuàng)新發(fā)展的同時,穩(wěn)步推進(jìn)合規(guī)落地,以在全球AI治理體系中占據(jù)有利位置。 As generative AI technology advances rapidly, global regulatory frameworks are evolving to address the legal and compliance challenges posed by AI-generated content. China's Measures and supporting standards, with their full-chain governance, dual-track markers, and dynamic regulation mechanisms, offer a unique compliance model. For enterprises, establishing robust data governance systems, clarifying algorithmic accountability, and building real-time monitoring and emergency response mechanisms are critical for mitigating legal risks and ensuring sustainable technological development. As international standards converge and regulatory oversight deepens, enterprises must continuously refine their compliance systems to secure a competitive position in the global AI governance landscape.
文 章 作 者 呂品一 上海中島律師事務(wù)所 律師 吉林大學(xué)法學(xué)碩士 專業(yè)領(lǐng)域:商事爭議訴訟與仲裁;公司綜合;人力資源與勞動人事;TMT與數(shù)據(jù)合規(guī) 工作微信:babababe_
電話:(021)80379999
郵箱:liubin@ilandlaw.com
地址:上海市浦東新區(qū)銀城中路68號時代金融中心27層
加入我們:liubin@ilandlaw.com
中島微信公眾號